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Abstract— Linear Frequency Modulation (LFM) waveform becomes widespread in modern pulse compression radar systems in order to 
improve its target range resolution capability. Conventional LFM based on varying the waveform frequency linearly within the radar pulse 
width which leads to high Auto Correlation Function (ACF) with limited compression ratio (CR) and side lobe level (SLL). This paper 
proposed Optimized Biphase Pulse Compression Codes (OBPCC) with the LFM waveform. Frequency and phase coding have been used 
to achieve optimum (SLL) and (CR) using Genetic algorithm (GA). The results compare the ACF for both LFM and phase coded (PCLFM). 
Set of codes are generated for code length of 51 with frequency modulation index from 0.002 to 0.009. Peak sidelobe level from -18.89 dB 
to -19.33 dB is achieved. The results obtained show superiority of PCLFM over the conventional LFM which improves the compression 
ratio by 9.95 times the conventional LFM. 

Index Terms— Radar Waveform, Pulsu Compression, LFM   
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1 INTRODUCTION                                                                     
n radar terminology extraction the high resolution 
spatial profile from received signal is known as 
pulse compression. The problem   matched filter output 

which makes the detection of weak echo signals accompanied 
by strong signals from target with high Radar Cross-Section 
(RCS) difficult or even impossible [1]. A very common pulse 
compression radar waveform is LFM chirp signal. Its utility is 
that it is fairly generated by a variety of technologies, and is 
easily processed by a variety of techniques that ultimately im-
plement a matched filter. Large sidelobe level of the ACF 
causes a serious problem in detection of targets especially in 
presence of nearby interfering targets or other noise sources. 
Reducing the sidelobes at the matched filter output is typically 
accomplished by linear filtering, most often by applying win-
dow functions or data tapering. This additional filtering al-
lows the matched filter to reduce the sidelobes as desired. 
However, since the cumulative  filtering is no longer precisely 
matched to the signal, it necessarily reduces output Signal to 
Noise Ratio (SNR) as well, typically by 1-2 dB (depending on 
the filtering or weighting function used), also widening the 
main lobe leads to degradation on radar  range  resolution. It 
is well-known that NLFM can advantageously shape the Pow-
er Spectral Density (PSD) such that the autocorrelation func-
tion exhibits substantially reduced sidelobes[2].Consequently, 
no additional filtering is required and maximum SNR perfor-
mance is preserved. The digital processing or SAW devices 
can be used to process nonlinear FM. NLFM technique gives 

better SNR performance, because no power is lost by window-
ing in the receiver. Different pulse compression techniques 
have been discussed [3-7], without decreasing the sidelobe 
level than -23 dB. This paper introduces group of OBPCC. The 
methodology of obtaining these codes depends on changing 
the waveform frequency and phase rather than the traditional 
methods which depends only on the frequency variation. GA 
has been used to achieve a set of optimized codes [8], but in-
creasing the length of the code will often lead to an unac-
ceptable slow convergence speed. 

 

2 THEORITICAL DESCRIPTION OF LFM WAVEFORM 
      The radar ambiguity function represents the output of the 
matched filter, and it describes the interference caused by the 
range and/or Doppler shift of a target when compared to                  
a reference target of equal RCS. The ambiguity function evalu-
ated at (τ, fd) = (0,0) is equal to the matched filter output that 
is perfectly matched to the signal reflected from the target of 
interest. In other words, returns from the nominal target are 
located at the origin of the ambiguity function. Thus, the am-
biguity function at nonzero τ and fd represents returns from 
some range and Doppler different from those for the nominal 
target [9]. 
 
The general formula of the Ambiguity Function (AF) assum-
ing a moving target with Doppler  frequency fd can be de-
scribed as follows: 
 
       �χ(τ, fd�

2=�∫ x�(t)x�∗(t − τ)ej2πfdt∞
−∞ dt�

2
             (1) 

 
The radar ambiguity function is normally used by radar de-
signers as a means of studying different waveforms. It can 
provide insight about how different radar waveforms may be 
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suitable for the various radar applications[10]. It is also used 
to determine the range and Doppler resolutions for a specific 
radar waveform. The AF of a single pulse can be written as:  
 

         |χ(τ, fd|2= ��1− |τ|
τo
�  sin�πfd(τo−|τ|)�

πfd(τo−|τ|) �
2

|τ| ≤  τo          (2)                          
  
where ,  τ  is the pulse width while τ0 is the compressed pulse 
width or effective pulse width. The LFM complex envelope 
signal is defined as: 
 
           x�(t) = 1

�τo
Rect � t

to
�ejπµt2             (3) 

 
The up-chirp ambiguity function cut along the time delay axis 
 τ  is : 
 

          |χ(τ, fd|2 = ��1− |τ|
τo
� 

sin ( πτo(μτ−fd)�1−|τ|
τo
�)

πτo(μτ−fd)�1−|τ|
τo
�
�
2

|τ| ≤  τo     (4)                               

 
Where, μ is the LFM coefficient and is equal to the bandwidth 
(B) divided by the pulse width. It is known that the LFM am-
biguity function cut along the Doppler frequency axis is simi-
lar to that of the single pulse. This is the pulse shape has not 
changed (only frequency modulation was added). However, 
the cut along the time-delay axis changes significantly. It is 
much narrower compared with the un modulated pulse. On 
the other side, Stepped Frequency Waveforms (SFW) is a class 
of radar waveforms that are used in extremely wide band-
width applications where very large time bandwidth product 
(or compression ratio) is requires [11]. The advent of high-
speed Digital-to-Analog Converters (DACs) and high-speed 
large-scale Field Programmable Gate Arrays (FPGAs) current-
ly facilitate generating high-performance precision digital 
LFM chirp waveforms. In LFM the transmitter spends equal 
time at each frequency, hence the nearly uniform spectrum. 
Another method for shaping the spectrum  rather than ampli-
tude weighting is to  deviate from the constant rate of fre-
quency change and to spend more time at frequencies that 
need to be enhanced. This approach was termed NLFM .  
 
The complex  envelope of  the NLFM signal is given by : 
 
          u(t) = g(t)                                                                 (5) 
 
where g(t) is the amplitude and ϕ(t) is the phase function. The 
Fourier transform can be described as follows: 
 
U(f) = |U(f)| exp[jϕ(f)] = ∫ g(t) exp�j�−2πft +ϕ(t)��dt∞

−∞   (6) 
 
In the Design  process of the transmitted LFM radar signal ,the 
matched filter output signal is given by the input filter auto-
correlation function. The signal autocorrelation function is 
determined by the Inverse Fourier Transform (IFT) of the en-
ergy spectral density. Frequency variation of LFM  follows a 
first order equation as follows : 
 

           f(t) = bt + c                                                            (7) 
changing the linear equation parameter (b) provides  a differ-
ent  frequency distributions used in the designed LFM , Pa-
rameters  used in our simulation is:  20 µ sec pulse width and 
chirp bandwidth  of (0-50) MHz . The Matched filter output 
using Fast Fourier Transform (FFT) can be simply described as 
shown in Fig.1. 

 
  

Fig.1. Matched filter output using FFT 
 
The sidelobe suppression of the matched filter output using 
the designed LFM radar signal has been improved as well, but 
far less.  
 

3 THEORITICAL DESCRIPTION OF BIPHASE CODES 
     The most widely used phase coded waveform employs two 
phases and is called binary, or biphase, coding. One family of 
biphase codes that produced compressed waveforms with 
constant sidelobe level equal to unity is Barker codes. The 
complex envelope of the phase coded pulse is given by [12], 

( )∑
=
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where  

                ( )mm ju φexp=   

the set of M phases, },......,,{ 21 mφφφ is the phase code asso-
ciated with u(t) and T is the pulse duration. The biphase codes 
consist of a sequence of either 0 and 1 or +1 and -1. code ele-
ment (l) means amplitude (1) and phase shift (0P

o
P) while (-1) 

means amplitude (1) and phase shift (πP

o
P). If a transmitted 

pulse u(t) with MRuR phase elements defined by um(1≤m≤M) 
and a reference pulse v(t) with MRvR elements defined by 
vRnR(1≤n≤MRvR). The cross-correlation function of two phase-
coded pulses is defined as [13]: 
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Phase coded signal using five bits [ 1 1 1 -1 1 ] biphase 
pulse compression  Barker code is shown in Fig.2. where the 
phase of the waveform changes according to the code ele-
ments.  
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Fig.2. Phase coded signal using Five bits biphase  
pulse compression code 

 
 

4 OPTIMIZATION PROCESS 
       Genetic algorithm has been used to optimize the pulse 
compression codes parameters by changing The code value 
.Binary encoding scheme is used in this algorithm to encode 
the code elements [13-15]. The chromosome contains the bi-
phase pulse compression code elements, each gene encoded as 
1 bit to represent the code element . Elitism is used to save the 
best solution to improve the performance of genetic algorithm. 
The algorithm started with a set of solutions called population 
solutions, one population is used to form a new population, 
this is motivated by hope that the new population will be bet-
ter than the old one .Solutions that are selected to form new 
off springs are selected according to their fitness .The fitness of 
pulse compression codes is determined according to two main 
parameters the PSL and MSL levels. The crossover rate used is 
randomly selected between 10-90 % , the mutation rate is 
equal to 3% , the population size is selected to be 64 . The op-
timization process proceeds to obtain the minimum PSL and 
MSL of the biphase pulse compression codes. 
 

5 OPTIMIZATION RESULTS 
         Fig.3.  show a comparison between ACF of LFM and 
OBPCC LFM with 0.002 modulation slope which reflects a 
significant improvement in compression ratio exceeded 9 
times that achieved from traditional LFM without any degra-
dation in SLL. With 0.003 modulation slope significant com-
pression ratio CR achieved with additional SLL reduction by 
more than -4 dB over the normal LFM as shown in Fig.4. The 
same conclusion can be achieved from Figs. (5 to 10) with 
modulation slopes from 0.004 to 0.009. Fig.11. demonstrate the 
ambiguity function of LFM signal while OBPCC LFM ambigu-
ity function shown in fig.12. Table (1) illustrates the optimized 
Biphase codes for each modulation slope.  

 
Fig. 3. PCLFM ACF with 0.002 LFM slope compared with con-
ventional LFM 
 

 
Fig.4. PCLFM ACF with 0.003 LFM slope compared with con-
ventional LFM 
 

 
Fig.5. PCLFM ACF with 0.004 LFM slope compared with con-
ventional LFM 
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Fig.6. PCLFM ACF with 0.005 LFM slope compared with con-
ventional LFM 

 
Fig.7.  PCLFM ACF with 0.006 LFM slope compared with con-
ventional LFM 

 
Fig.8.  PCLFM ACF with 0.007 LFM slope compared with con-
ventional LFM 

 
Fig.9.  PCLFM ACF with 0.008LFM slope compared with con-
ventional LFM 

 
Fig.10. PCLFM ACF with 0.009 LFM slope compared with 
conventional LFM 

 
Fig.11. Ambiguity function of the 51-element LFM. 
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Fig.12. Ambiguity function of the 51-element GA OBPCC 
LFM., with 0.002 LFM slope 
 
M.S Biphase Code SLL(dB) 
0.002 [0,1,0,1,1,0,1,1,0,0,1,0,0,0,1,1,0,0,0,0,1,1,1,0,0,0,

1,0,1,0,1,1,1,0,0,0,0,0,0,1,0,0,0,1,1,0,1,1,0,1,0;] 
-18.95  

0.003 [0,0,0,0,0,0,1,0,1,0,1,1,0,0,1,1,1,1,0,0,0,0,1,0,1,1,
1,0,1,0,1,0,1,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,0,1,0;] 

-18.89 

0.004 [1,1,0,0,0,1,1,1,1,0,1,0,0,1,0,1,0,0,1,0,1,1,0,0,0,1,
0,0,1,0,0,0,0,0,0,1,0,1,1,0,1,0,1,0,1,1,0,1,0,1,0;] 

-19.06 

0.005 [0,0,0,0,1,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1,0,1,1,0,1,0,
1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,1,0,1,0,0,0,0,1,1,1;] 

-19.49 

0.006 [0,0,0,0,1,1,0,1,0,0,1,1,0,0,0,0,1,0,0,1,0,1,1,0,0,1,
0,1,1,0,0,0,0,1,0,1,1,0,0,1,1,1,1,1,0,0,1,0,1,1,0;] 

-19.34 

0.007 [0,0,1,1,0,1,0,0,1,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,
0,0,1,0,0,1,0,1,1,0,0,0,1,0,0,1,0,0,0,0,1,0,0,1,0;] 

-19.15 

0.008 [1,1,0,1,0,0,0,1,1,1,0,0,1,1,1,1,0,1,0,0,0,0,0,0,1,1,
0,0,0,1,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,1,0,0,1,1,1;] 

-19.08 

0.009 [1,1,1,1,1,0,0,0,0,0,0,0,0,1,0,1,1,1,0,1,1,1,0,0,0,0,
0,0,0,0,1,1,1,0,1,1,0,0,1,1,1,0,0,0,1,0,0,1,0,1,1;] 

-19.33 

 

5 CONCLUSION 
      This paper proposed Optimized Biphase Pulse Compres-
sion Codes (OBPCC) with the LFM waveform. Frequency and 
phase coding have been used to achieve optimum (SLL) and 
(CR) using Genetic algorithm (GA). The results compare the 
ACF for both LFM and phase coded (PCLFM). Set of codes are 
generated for code length of 51 with frequency modulation 
index from 0.002 to 0.009. Peak sidelobe level from -18.89 dB to 
-19.49 dB is achieved. The results obtained show superiority of 
PCLFM over the conventional LFM which improves the com-
pression ratio by 9.95 times the conventional LFM. 
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